
CSC 108H: Introduction to Computer
Programming

Summer 2012

Marek Janicki

July 19th 2012

Administration

● Final is Aug 16 7pm-10pm in SF3201

● Assignment 2 update.

● Silence for last 24 hours that the assignment is due.
● Office hours W 2-4 next week instead of F 2-4 next

week.
● Help Centre is in BA2270 2-4 M-R.

July 19th 2012

Sorting Overview

● We covered three types of sort: Bubble,
Insertion, and Selection.

● Selection sort minimises swaps.
● Insertion sort is optimal for small data.
● Bubble sort is optimal for nearly sorted data.
● Each sort can be viewed as running a helper

function inside of a for loop.
● The helper function contains the 'core' of the sort.

July 19th 2012

Sorting in practice.

● In practice bubble, selection, and insertion sort
are all sort of slow.

● There are better sorting methods out there.
● The most commonly used ones are merge, heap

and quick sort).
● These all rely on recursion.

● Python uses an adaptive form of merge sort.
● Bubble and insertion sort have specific

instances in which they are useful and are
used.

July 19th 2012

Thinking about Loops

● Commonly one thinks of loops as single big
elements.
● One imagines the whole loop doing something.
● The program is in one state, executions the loop in

another.

● Sometimes one needs a more refined way of
looking at loops.
● Commonly to find errors.
● Also used

July 19th 2012

Refined Loop Descrition

● A useful tool for analysing loops is a loop
invariant.

● A loop invariant is a statement that is true every
time to loop begins.
● So it depends on the loop index.

● They have both informative and imperative
functions.

July 19th 2012

Loop Invariant Example

for j = 0 to n-i-1

 if my_lst[j]>my_lst[j+1]

 swap my_lst[j] and my_lst[j+1]
● Here we see that the jth element is always the

biggest that we've seen. So a loop invariant
would be:
● my_lst[j] is the largest element in my_lst[0:j]

– This tells us a truth at the beginning of any iteration.
– It also tells us what we need to do in any iteration.

July 19th 2012

Pseudocode and Loop Invariants

● Loop invariants are really useful in pseudocode,
since they point towards the overall design of
the program.

● Also can be useful in finding +/- 1 errors.
● Explicitly stating things in terms of the index makes

it easier to catch mistakes.

July 19th 2012

Good programs

● What do we want from a good program?
● Correctness
● Legibility
● Speed

July 19th 2012

How do we measure speed?

● We can measure directly.
● Get time from the computer, perform our code, get

time again and measure the difference.

● We use the time module to get time from the
computer.
● use time.time() to get the time in seconds since Jan

1st, 1970.

● Speed testing can be a part of testing.

July 19th 2012

Problems with direct speed measurements

● Dependent on system architecture.
● Dependent on other programs that are running.
● Dependent on input!

● It is hard to tell if you will have bad inputs from a
suit of tests.

● If your code has varying speed performance what
can one say about it.

July 19th 2012

Architectures

● Code can often run much faster on one
machine than another.

● Certain compilers and languages are betters
suited for certain machines than others.
● The same code in different languages can run at

different speeds.

● Architectures change quickly, how can we tell
that we're testing the code and not the
architecture?

July 19th 2012

Moore's Law

● Says that processing power doubles every 18
months.
● Although that number is up for debate.
● Still the point is that computer speed increases fast.

● This means that larger inputs are getting
tractable all the time.
● Speed testing doesn't cover this really well unless

you constantly update them.
● Large scale speed tests are costly.

July 19th 2012

Alternative to Speed Testing

● Should be architecture independent.
● Just based on code, or even the idea behind the

code.
● One program might have a worse idea but be faster

due to the language it is written in.

● Should be scalable.
● Don't need to update tests.

July 19th 2012

Break, the first

July 19th 2012

Computational Complexity

● Developed by Computer Scientists to make
general claims about the speed of programs
that are scalable.

● The idea:
● take an algorithm designed for arbitrary input.
● Assume it takes n input.
● Give a function that describes how long it takes.
● Compare the function size.

July 19th 2012

Inputs

● What if your algorithm is really fast on some
inputs but slow on others?

● Consider the worst case.
● The idea behind this is that you don't know what

inputs are going to come in practice.
● But you want to make a guaranteed claim

July 19th 2012

How do we measure speed?

● Look to how processors are built.
● This tells us arithmetic operations all take the same

amount of time.
– Note that (1+3) + (5 * 6) counts as 3 arithmetic

expressions.
● So do variable lookups, and boolean expressions.

● So we set this to be our base unit and count
'steps'.

July 19th 2012

Counting steps.

● We could go through a program and explicitly
count every step.

● This is difficult.
● Moore's Law suggest that there's not a huge

difference between something that takes x
steps and something that takes x + 4 steps.
● In 18 months, the whole thing is divided by two

anyways.

July 19th 2012

Moore's Law and Counting.

● This suggests that taking something from x + 4
steps to x steps is not a good use of time.

● Recall that we have input of size n.
● So we just tend to put all the constant terms into

one big constant and leave it at that.

July 19th 2012

Counting Steps:

● What about loops?
● Here we count the number of lines in the loop block,

times the number of times the loop is executed.
● Keep in mind that if we have nested loops, then to

get the total number of lines of code we execute, we
need to multiply the number of times the inner loop
runs time the number of times the outer loop runs.

● For while loops we need to consider the worst-case
scenario.

July 19th 2012

Terms dependent on n

● So we know that each individual step takes a
constant amount of time.

● To get something dependent on n, we need to
do something for each element of the input.

● And example of this would be a for loop over an
input list.
● If each iteration of the loop takes a constant amount

of time, the complexity is n, since we do n
operation.

July 19th 2012

Multiple terms

● What if we calculate our function and it has 15
+ 2n + n*n steps?

● We saw that we treat all constants the same.
● For similar reasons, we can ignore the 2n and

just focus on the n*n.
● In particular we don't care about the constant in

front of the n.

● So we say that the code grows quadratically.

July 19th 2012

Some general guidelines:

● Always take the worst case if your code varies
what it does.

● Constants aren't important.
● We'll see why this is formally in 165.
● But roughly, this has to do with the way functions

grow at large numbers.
– Which we justify using Moore's law.

● A for loop that depends on list or dictionary
length almost always adds a power of n.
● So a lot of basic complexity analysis is just counting

for loops.

July 19th 2012

Complexity Analysis.

● Generally done at the conceptual stage.
● But can be applied to explicit code.
● Generally constants are ignored, and we only

care about the biggest term in the function.
● Smaller functions are considered better.

July 19th 2012

Speed Testing Vs. Complexity

● Speed Testing is very good for optimising
solutions.

● Complexity analysis is better for deciding which
solution to use.

● Even testing at a bunch of scales isn't
guaranteed to find the best solution.

● A nice talk about how sometimes using
complexity can lead to improvements in speed.

● http://epresence.kmdi.utoronto.ca/1/watch/889.
aspx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

